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Abstract—Anchor based incomplete multiview clustering has
grasped growing interest recently because of its great success
in effectively partitioning multimodal data. However, due to the
absence of label information, the constructed anchors could be
mismatched. Such an Anchor Mismatching Problem (AMP) will
cause the structure of generated bipartite graph to be chaotic,
degrading the clustering performance. To tackle this issue, we de-
sign an algorithm termed Constructing Corresponding Anchors
for Incomplete Multiview Clustering (CCA-IMC). Specifically, we
first devise a permutation strategy to transform anchors on each
view. Subsequently, we directly generate the consensus bipartite
graph, which is shared for all incomplete views, by the trans-
formed anchors rather than by fusing each view-specific bipartite
graph. Afterwards, all anchors and permutation matrices as well
as the consensus bipartite graph are jointly optimized in one
common framework so as to promote each other. In such ways,
anchors are rearranged towards correct matching relationship
according to the consensus graph structure. In addition to these,
our CCA-IMC has also been proven to be with linear time and
memory overheads, which makes it able to scale up to work
with large-scale tasks. Massive experiments implemented on ten
popular datasets give evidence of our superiorities compared to
current strong IMC competitors.

Index Terms—Incomplete multiview clustering, Corresponding
anchors, Bipartite graph, Multiview learning.

I. INTRODUCTION

AS a representative of unsupervised learning, multiview
clustering technology can automatically divide multiview

data, which is typically collected from different views or
modalities, into distinct sets and thereby discover the intrinsic
structure between samples [1]–[3]. Compared to single-view
clustering, multiview clustering achieves more encouraging
results by taking advantage of complementary information
between different views, and is widely applied in video pro-
cessing [4]–[6], machine learning [7]–[9], intelligence appli-
cations [10]–[12], and so on. During the past few years, many
prominent algorithms have been designed, such as spectral
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clustering [13]–[15], kernel clustering [16]–[18], hierarchical
clustering [19]–[21]. Although these methods make obvious
performance improvement from various aspects, all of them
require each view to be complete [22]–[26]. In several real-
world applications, however, this setting is unavoidably broken
due to sensor breakdown or environment variation, leading to
current multiview clustering algorithms failing to work. As a
consequence, how to effectively group incomplete multiview
data without any label information attracts increasing atten-
tion, which is generally referred to as incomplete multiview
clustering (IMC) in literatures.

To alleviate IMC problem, a series of algorithms have been
elaborately devised [27]–[32]. For example, Shao et al. [33]
adopt weighted non-negative matrix factorization (NMF) and
ℓ1,2 norm to derive the unified potential features of missing
samples. Fang et al. [34] try to learn the unique and consistent
information of incomplete views by subspace decomposition.
Wen et al. [35] construct the locality-maintained reconstruc-
tion regularizer to infer partial views and utilize the reverse
graph regularizer to align inferred views and partial views.
Zhao et al. [36] couple incomplete views by a graph Laplacian
term instead of projecting samples into a common space to pre-
serve the global structure between data. Hu et al. [37] decrease
the impact of incomplete instances by building a unified basis
matrix and associate each view with a weight matrix so as
to handle more than two views. Despite achieving impressive
clustering results, these methods are generally with expensive
computational and memory expenditures, which limits their
further application on large-scale tasks. For increasing the effi-
ciency, Wang et al. [38] introduce anchor technology into IMC
for the first practice, and successfully generate anchor-instance
similarities instead of pair-wise instance-instance similarities.
Accordingly, the complexities are reduced to be linear w.r.t
the number of samples.

Although anchor based IMC methods produce pleasing
results under economical expenditures, the constructed anchors
could be mismatched, which will to some extent hinder the
clustering performance. Concretely, as shown in Fig. 1, since
there is no any label information, the cluster order on each
view could be different. For example, in view 1, the cluster
order is [1, 2, 3, 4] while in view 2 it is [2, 4, 1, 3]. Considering
that the principle of anchor technology is to approximately
represent the samples in clusters by using fewer anchors,
we have that anchor 1 of view 1 will be mismatched to
anchor 2 of view 2. Accordingly, the generated view-specific
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Fig. 1. The framework of current anchor-based incomplete multiview clustering. It first constructs anchors on respective view, and then generates the view-
specific bipartite graph. Subsequently, it fuses all generated view-specific bipartite graphs to produce the consensus bipartite graph. After these three stages, the
final discrete grouping results are obtained by performing spectral algorithm on the consensus bipartite graph. Since data does not have any label information,
the cluster order on each view could be different, which will cause the constructed anchors to be mismatched. Mismatched anchors will further lead to the
subsequent view-specific bipartite graphs and consensus bipartite graph being with chaotic structure, harming the clustering performance.

bipartite graphs are misaligned. For instance, the red first row
of view 1 bipartite graph is misaligned to the purple first row
of view 2 bipartite graph while it should be aligned to the
red third row of view 2 bipartite graph. We also show the
anchor mismatching phenomenon on dataset Handwritten in
Fig. 2. Samples 400 ∼ 600 in view 2 correspond to anchor
3 while they in view 1 correspond to anchor 8. Such an
Anchor Mismatching Problem (AMP) will lead to the structure
of generated (view-specific and consensus) bipartite graph(s)
being chaotic, impacting the clustering results. For this reason,
how to construct corresponding anchors for IMC becomes an
urgent problem that needs to be addressed.

One intuitive way is to calculate the distance between an-
chors on different views, and then rearrange anchors according
to their similarity. Unfortunately, multiview data is typically
with diverse dimensions, and naturally the anchors constructed
on different views are also with different dimensions. It is
hard to directly measure the distance for anchor sets under
various dimension spaces. One solution is to project anchors
into an unified space so that they share a common dimension.
Nevertheless, the projection operation will bring about serious
information loss. Besides, it also needs to employ extra efforts
to tune the dimension hyper-parameter, which will limit the
algorithm’s scalability. For effectively alleviating AMP, in this
paper we devise an algorithm named Constructing Correspond-
ing Anchors for Incomplete Multiview Clustering (CCA-IMC),
and the overall framework is demonstrated in Fig. 3. To be
specific, we first introduce a permutation matrix for each
view so as to transform anchors in their original dimension
space. Then, we choose to skip the stage of generating view-
specific bipartite graphs, and directly generate the consensus
bipartite graph based on the transformed anchors. One ad-
vantage is that it can save the time and memory overheads
caused by view-specific bipartite graphs. Another is that it
can eliminate the impact of inappropriate fusion strategies on
the quality of consensus bipartite graph. More importantly, the
consensus structure can be regarded as a bridge that directly
links anchors on different views, forcing them to rearrange
towards the corresponding relationship. Additionally, existing
algorithms usually adopt a separated three-stage mechanism,
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Fig. 2. The anchor mismatching phenomenon on dataset Handwritten.
Anchors 3, 4, 8, 9 in view 2 are mismatched to anchors 8, 9, 3, 4 in view 1
respectively. (c) is the desired transformation relationship. After transforming
(a) with (c), anchors on (a) will be correctly matched to these on (b).

i.e., firstly utilizing heuristic strategies to construct anchors,
then generating view-specific bipartite graphs based on the
constructed anchors, and subsequently fusing all view-specific
bipartite graphs to generate the consensus bipartite graph.
The separation of three stages could be not good for the
clustering results since they can not communicate with each
other. Different from them, we adopt a joint-optimization
mechanism so that all anchors and permutation matrices as
well as the consensus bipartite graph boost mutually. By such
ways, anchors will be rearranged iteratively towards the correct
matching relationship. Besides these, CCA-IMC is also proven
to be with linear time and space complexities, and thus is
suitable for coping with large-scale tasks. Substantial experi-
ments conducted on ten popularly-used datasets demonstrate
its superiorities against current SOTA methods. In short, our
contributions are as follows:

1) We devise a CCA-IMC algorithm for incomplete mul-
tiview clustering to alleviate the Anchor Mismatch-
ing Problem (AMP). By introducing the permutation
strategy and directly generating the consensus bipartite
graph, CCA-IMC rearranges different anchor sets to-
wards the corresponding relationship.

2) Unlike previous methods that utilize the separated three-
stage mechanism, CCA-IMC adopts a joint-optimization
mechanism, which makes anchors, permutation matrices
and consensus bipartite graph able to boost each other.

3) CCA-IMC enjoys the time and space complexities linear
to the number of samples, and is suitable for handling
large-scale IMC tasks.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3312979

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 20,2024 at 06:23:14 UTC from IEEE Xplore.  Restrictions apply. 



3

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 2 Cluster 4 Cluster 1 Cluster 3

Consensus Bipartite Graph

Incomplete View 1

Incomplete View 2

Constructing
Anchors

Constructing
Anchors

Permutation 

Permutation

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Legend: 

Joint-optimization

Fig. 3. The framework of proposed CCA-IMC algorithm. Each view is associated with a permutation matrix so as to transform anchors in their original
dimension space. It skips the stage of generating view-specific bipartite graphs, and directly generates the consensus bipartite graph. In addition to saving the
time and space overheads and getting rid of the negative impact caused by inappropriate fusion strategies, most importantly, the consensus graph structure
plays a role in bridging different anchor sets, forcing anchors to rearrange towards the correct matching relationship. Different from existing algorithms that
adopt a separated three-stage mechanism, it jointly optimizes all anchors and permutation matrices as well as the consensus bipartite graph in one shared
framework such that they can promote mutually.

II. RELATED WORK

A. IMC

To effectively tackle IMC problem, in recent years ex-
tensive prominent algorithms have been designed. Existing
IMC methods can be roughly divided into four kinds: NMF
methods [33], [36], [39]–[41], kernel methods [42]–[46], graph
methods [1], [47]–[53] and neural network methods [54]–
[58]. NMF based IMC methods seek to generate the con-
sensus latent partition space across incomplete views. For
example, Zhao et al. [36] transform original samples to a
complete representation in potential space, and then design
a graph Laplacian regularizer to preserve compact global
structure among all views. Wen et al. [40] alleviate the
factorization errors by constructing the nearest neighbor graph,
and employ orthogonal constraint on basic matrix to capture
representation more discriminatively. Wen et al. [41] unify
graph construction and representation learning together, and
minimize the disagreement between representations by the
co-regularization constraint. Kernel based IMC methods are
devoted to producing the ideal similarity measure for all
incomplete views. For instance, Li et al. [42] increase the
selection probability of kernels with high diversity by building
alignment criterion, and generate high-confidence similarity
matrix by eliminating the unreliable evaluation between farther
samples. Liu et al. [45] alternatively learn clustering matrix
and impute based matrix in a shared framework, and generate
consensus similarity by aligning them using an optimal per-
mutation matrix. Zhang et al. [46] integrate partition matrix
imputation and label generation together, and make consensus
similarity and clustering task boost each other. Graph based
IMC methods try to restore the affinity relationship between
samples and construct a fused graph for all views. Cui et
al. [59] adaptively explore the global structure by low-rank
constraint, and unify related information between inter-views
and intra-views to restore complete graph structure and affinity.
Wen et al. [49] introduce tensor constraint to exploit the high-
level correlations among views, and combine feature space
and manifold space to capture hidden information within

incomplete views. Liang et al. [50] learn sample-level weight
instead of directly weighting views to consider the affection of
partial instances, and construct the fused graph by joint graph
fusion scheme. Rather than learning the coefficient matrix
for selected features, Tang et al. [51] choose to introduce
the weighting matrix to directly learn the feature dimensions’
weights, and map the captured features into a label space
so as to regularize the underlying structure among multi-
view data. Due to the original feature space unavoidably
including the redundancy representation and noise, Li et al.
[52] generate the affinity graph in the spectral embedding
space so that the learned graph is sufficient to characterize
the cluster structure. Tang et al. [53] skip the subsequent k-
means procedure and directly output the discrete results via the
one-step clustering strategy to alleviate the information loss
caused by the separated two-stages strategy. Neural network
based IMC methods intend to exploit high-level characteristics
from incomplete samples by ingenious network architecture.
Lin et al. [54] devise an innovative objective consisting of data
recovery and consistency learning, and maximize the mutual
information to capture informative characteristics. Xu et al.
[55] design a network without requiring imputation and fusion,
and discover linear separability by constructing embedding
feature learning for each view. Zhang et al. [56] learn the con-
sensus potential representation by jointly considering structure
and completeness, and apply a clustering-like classification
loss to increase the separability of representation.

B. Graph learning for IMC

Given incomplete multiview data Xq ∈ Rdq×n and indicator
vector bq ∈ Rnq×1 where dq and nq denote the dimension and
number of samples observed on the q-th view respectively, we
define an index matrix Mq ∈ Rn×nq , [Mq]i,j = 1 if [bq]j =
i ∀j = 1, 2, · · · , nq else 0. Subsequently, we have that
XqMq ∈ Rdq×nq denotes the available data on the q-th view.

Due to missing samples, the full graph will contain the
blanks in certain columns and rows. By positioning view-
specific sub-graphs into corresponding parts, graph learning
based IMC optimizes a group of sketched sub-graphs to obtain
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the fused full graph. Specifically, it firstly generates view-
specific sub-graph Gq ∈ Rnq×nq by the following framework:

min
Gq

∥XqMq −XqMqGq∥2F + φ (Gq)

s.t. G⊤
q 1 = 1,Gq ≥ 0,

(1)

where φ(·) denotes some regularization strategies. Then, the
full graph is restored by MqGqM

⊤
q ∈ Rn×n. Afterwards,

the fused full graph G ∈ Rn×n is obtained by solving the
problem:

min
G

f

(
v∑

q=1

βqMqGqM
⊤
q ,G

)
s.t. β⊤1 = 1,β ≥ 0,G⊤1 = 1,G ≥ 0,

(2)

where f(·, ·) denotes various fusion strategies [60]–[62], and
βq denotes the graph coefficient variable. The final clustering
results can be acquired by running spectral algorithms on G.
However, due to the full graph with size n × n, it usually
needs O(n3) computational expenditures to get the spectral
embedding when running spectral algorithms. To increase
the efficiency, anchor technology is introduced into IMC. It
firstly constructs anchors Hq ∈ Rdq×m by heuristic strategies
[22], [63]–[65] where m is the number of anchors, and then
generates view-specific bipartite graph Eq ∈ Rm×n by solving

min
Eq

v∑
q=1

∥XqMq −HqEqMq∥2F + φ(Eq)

s.t. E⊤
q 1 = 1,Eq ≥ 0.

(3)

Afterwards, fusing {Eq}vq=1 generates the consensus bipartite
graph E ∈ Rm×n. Since the final graph is with size m×n and
m is far less than the number of samples n, accordingly, the
computational expenditures are reduced to O(mn). Despite
improving the efficiency while providing desirable clustering
results, it generally suffers from the AMP problem. To tackle
AMP, in next section, we devise a named CCA-IMC algorithm.

III. FORMULATION

We elaborate CCA-IMC’s principle, time complexity, space
complexity and convergence respectively.

A. Framework

Firstly, we introduce a permutation matrix for each view.
Besides being able to flexibly transform anchors, it also main-
tains the original dimension information. Afterwards, rather
than generating view-specific bipartite graphs, we directly gen-
erates the consensus bipartite graph based on the transformed
anchors, which makes all anchors share a common structure.
At this point, the IMC framework is formulated as

min
Tq,E

v∑
q=1

∥XqMq −HqTqEMq∥2F + λ ∥E∥2F

s.t. Tq1 = 1,T⊤
q 1 = 1, [Tq]i,j ∈ {0, 1},

E⊤1 = 1,E ≥ 0,

(4)

where Tq ∈ Rm×m denotes the permutation matrix on the
q-th view. In addition, the anchor construction procedure is

separated from graph generation, which causes the graph
quality to severely depend on the given anchors. In IMC, due
to unpaired missing instances, the heuristic strategy could not
provide high-quality anchors. To this end, we choose to make
all anchors optimizable, which will make anchors, permutation
matrices and the consensus bipartite graph able to communi-
cate mutually, thus enhancing each other. Further, multiview
data is typically with different dimensions. This could result
in each view having different importance. Unlike previous
methods that consider all views equally, we assign a coefficient
for each view to automatically measure its contribution. Thus,
our IMC framework is designed as

min
Hq,Tq,E,α

v∑
q=1

α2
q ∥XqMq −HqTqEMq∥2F + λ ∥E∥2F

s.t. H⊤
q Hq = Im,Tq1 = 1,T⊤

q 1 = 1, [Tq]i,j ∈ {0, 1},
E⊤1 = 1,E ≥ 0,α⊤1 = 1,α ≥ 0,

(5)

where the constraint H⊤
q Hq = Im guarantees the optimized

anchors to be more discriminative, and α ∈ Rv denotes the
view weight vector.

B. Optimization

To address Eq. (5), we devise an alternating optimization
scheme, which divides the entire problem into four parts so
that the optimal value of each variable can be acquired when
fixing the rest of variables.

1) Hq sub-problem : Fixing other variables, Eq. (5) with
respect to Hq can be written as

min
Hq

v∑
q=1

α2
q ∥XqMq −HqTqEMq∥2F

s.t. H⊤
q Hq = Im.

(6)

Considering that anchor matrices {Hq}vq=1 are mutually inde-
pendent, we can equivalently transform Eq. (6) as

min
Hq

∥XqMq −HqTqEMq∥2F s.t. H⊤
q Hq = Im. (7)

Further, we have

min
Hq

∥XqMq −HqTqEMq∥2F

= min
Hq

Tr
(
XqMqM

⊤
q X

⊤
q +HqTqEMqM

⊤
q E

⊤T⊤
q H

⊤
q

−2XqMqM
⊤
q E

⊤T⊤
q H

⊤
q

)
⇔ max

Hq

Tr
(
XqMqM

⊤
q E

⊤T⊤
q H

⊤
q

)
= max

Hq

Tr
[
H⊤

q (Xq ⊙Wq)E
⊤T⊤

q

]
,

(8)
where Wq = 1dq ·

[∑nq

j=1[Mq]1,j , . . . ,
∑nq

j=1[Mq]i,j . . . ,∑nq

j=1[Mq]n,j
]
. Subsequently, given the theorem in [66], the

optimal Hq is the product of U and V⊤ where U and V are
the SVD results of (Xq ⊙Wq)E

⊤T⊤
q respectively.
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Hadamard product operation plays a role in decreasing the
computational complexity. Specifically, due to MqM

⊤
q being

∑nq

j=1[Mq]1,j 0 · · · 0

0
∑nq

j=1[Mq]2,j · · · 0
...

...
...

...
0 0 · · ·

∑nq

j=1[Mq]n,j

 ∈ Rn×n

(9)
and Xq ∈ Rdq×n, the construction of the term
XqMqM

⊤
q takes O(dqn

2). Accordingly, performing SVD on
XqMqM

⊤
q E

⊤T⊤
q to generate the optimal Hq takes O(n2).

In virtue of the Hadamard product operation, XqMqM
⊤
q is

equivalently transformed as Xq ⊙ Wq . The operation Xq ⊙
Wq takes O(dqn) complexity. Computing (Xq ⊙Wq)E

⊤T⊤
q

takes O(dqn+dqnm+dqm
2) time cost and performing SVD

on it takes O(dqm
2) cost. Consequently, optimizing Hq takes

O(dqnm) totally per iteration.
2) Tq sub-problem : Fixing other variables, Eq. (5) with

respect to Tq can be equivalently written as

min
Tq

∥XqMq −HqTqEMq∥2F

s.t. Tq1 = 1,T⊤
q 1 = 1, [Tq]i,j ∈ {0, 1}.

(10)

After deleting irrelevant items, Eq. (10) is equivalently con-
verted as

max
Tq

Tr (BTq) s.t. Tq1 = 1,T⊤
q 1 = 1, [Tq]i,j ∈ {0, 1},

(11)
where B = E (Xq ⊙Wq)

⊤
Hq . In conjunction with matrix

vectorization operation, we further have

max
Tq

(
Vec

(
B⊤))⊤ Vec (Tq)

s.t. Tq1 = 1,T⊤
q 1 = 1, [Tq]i,j ∈ {0, 1},

(12)

which is a combinatorial optimization problem and can be
solved in O(m3) complexity.

Computing E (Xq ⊙Wq)
⊤
Hq and performing combinato-

rial optimization solving on it cost O(dqn+mndq+m2dq) and
O(m3) time complexity respectively. Accordingly, optimizing
Tq needs O(mndq) in total per iteration.

3) E sub-problem: Fixing other variables, Eq. (5) with
respect to E becomes

min
E

v∑
q=1

α2
q ∥XqMq −HqTqEMq∥2F + λ ∥E∥2F

s.t. E⊤1 = 1,E ≥ 0.

(13)

Expanding the objective of Eq. (13) yields

min
E

v∑
q=1

α2
q ∥XqMq −HqTqEMq∥2F + λ ∥E∥2F

⇔ min
E

v∑
q=1

α2
q Tr

(
E⊤EMqM

⊤
q − 2E⊤T⊤

q H
⊤
q XqMqM

⊤
q

)
+ λTr

(
E⊤E

)
= min

E
Tr
(
E⊤EC− 2E⊤D

)
,

(14)

where C =
∑v

q=1 α
2
qMqM

⊤
q + λIn and D =∑v

q=1 α
2
qT

⊤
q H

⊤
q XqMqM

⊤
q =

∑v
q=1 α

2
qT

⊤
q H

⊤
q (Xq ⊙Wq).

In conjunction with the facts that C is a diagonal matrix
and that the constraint E1 = 1 is for each column of E, we
can transform Eq. (13) as:

min
E:,j

E⊤
:,jE:,jCj,j − 2E⊤

:,jD:,j s.t. E⊤
:,j1 = 1,E:,j ≥ 0. (15)

Further, we have

min
E:,j

∥∥∥∥E:,j −
D:,j

Cj,j

∥∥∥∥2
F

s.t. E⊤
:,j1 = 1,E:,j ≥ 0. (16)

The Lagrangian function of Eq. (16) is

L (E:,j , β,γ) =
1

2

∥∥∥∥E:,j −
D:,j

Cj,j

∥∥∥∥2
F

− β
(
E⊤

:,j1− 1
)
− γ⊤E:,j .

(17)
Based on KKT conditions, we have

E:,j −
D:,j

Cj,j
− β1− γ = 0, γ ⊙E:,j = 0. (18)

That is,

E:,j =
D:,j

Cj,j
+ β1+ γ, and γi[E:,j ]i = 0, i = 1, 2, . . . ,m.

(19)
Given the constraints E⊤

:,j1 = 1 and E:,j ≥ 0, we further have

E:,j =

D:,j

Cj,j
+

1− D⊤
:,j1

Cj,j
1

m


+

(20)

Then, stacking {E:,j}nj=1 by column generates the optimal E.
Constructing C and D requires O(nd) and O(dn+m2d+

mdn) time overheads respectively where d is
∑v

q=1 dq . Cal-
culating the analytical solution of E takes O(mn). Thus,
optimizing E costs O(mdn) time complexity per iteration.

4) α sub-problem : Fixing other variables, Eq. (5) with
respect to α becomes

min
α

v∑
q=1

α2
q ∥XqMq −HqTqEMq∥2F s.t. α⊤1 = 1,α ≥ 0.

(21)
Since the term ∥XqMq −HqTqEMq∥2F is irrelevant to αq ,

we can acquire the optimal αq by Cauchy-Schwarz inequality:

αq =

1
∥XqMq−HqTqEMq∥2

F∑v
q=1

1
∥XqMq−HqTqEMq∥2

F

. (22)

Note that

∥XqMq −HqTqEMq∥2F =∥∥XqMqM
⊤
q −HqTqEMqM

⊤
q

∥∥2
F
=

∥Xq ⊙Wq −HqTq (E⊙Gq)∥2F ,

(23)

where Gq = 1m×1 ·
[∑nq

j=1[Mq]1,j , . . . ,
∑nq

j=1[Mq]n,j
]
1×n

.
We can calculate the term ∥Xq ⊙Wq −HqTq (E⊙Gq)∥2F
instead of ∥XqMq −HqTqEMq∥2F . The purpose of doing
so is to reduce the computational complexity. To be spe-
cific, due to the computation of XqMq taking O(dqnnq),
calculating ∥XqMq −HqTqEMq∥2F will take O(n2) when
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TABLE I
CLUSTERING RESULTS COMPARISON. RANKING NO.1 AND NO.2 RESULTS ARE EMPHASIZED IN BLACK AND UNDERLINED RESPECTIVELY. MOE

REPRESENTS THE MEMORY OVERFLOW ERROR.

Dataset Metric
BSV MIC MKKM-IK DAIMC UEAF IK-MKC EEIMVC FLSD CBG PIMVC BGIMVSC Proposed

[27] [33] [29] [37] [35] [43] [44] [39] [38] [67] [68]

ORL

NMI 48.49±0.90 56.44±1.00 75.95±1.33 82.89±1.06 76.16±1.25 79.76±1.41 85.37±1.32 67.91±1.28 87.58±1.31 84.22±0.88 67.13±0.77 88.78±1.29
ACC 24.32±0.89 37.56±1.66 59.80±2.44 68.03±2.32 60.25±2.50 64.95±2.62 73.24±2.54 48.09±1.85 75.60±2.85 70.64±2.00 45.75±1.07 77.27±2.67
PUR 26.80±0.92 40.81±1.40 62.79±2.11 71.82±1.79 63.90±1.90 67.68±2.34 76.09±2.19 50.88±1.72 78.54±2.35 74.17±1.60 49.22±0.88 80.12±2.24
FSC 9.01±0.69 17.30±1.18 46.32±2.50 56.84±2.87 42.53±2.74 53.30±2.91 63.67±2.85 31.17±2.00 67.34±3.07 57.65±2.88 29.26±1.87 69.72±3.02

NGs

NMI 19.53±0.96 2.39±0.59 63.16±0.11 62.39±5.28 66.98±0.03 32.78±0.15 56.50±1.66 64.45±1.87 72.18±0.03 71.16±0.10 61.90±0.02 77.07±0.06
ACC 40.45±1.53 20.93±0.46 79.63±0.09 80.49±5.03 84.33±0.01 49.86±0.12 75.95±4.56 83.83±3.53 88.47±0.01 87.89±0.06 76.18±0.03 90.73±0.00
PUR 43.12±0.85 21.29±0.42 79.63±0.09 80.55±4.93 84.33±0.01 50.56±0.10 76.50±3.09 84.09±2.95 88.47±0.01 87.89±0.06 76.71±0.02 90.73±0.00
FSC 32.27±0.61 32.95±0.04 68.72±0.07 67.96±5.58 72.93±0.02 42.29±0.13 62.83±2.41 71.95±2.48 78.64±0.02 77.67±0.09 67.05±0.03 82.43±0.01

Prokaryotic

NMI 14.35±0.07 24.04±1.28 21.00±0.24 26.30±3.19 18.76±0.01 19.25±0.04 26.28±1.11 22.64±1.19 28.26±0.17

MOE

25.18±0.00 31.20±0.21
ACC 48.65±0.12 52.25±1.69 45.91±0.12 50.37±3.95 45.57±0.03 46.12±0.07 55.98±2.30 56.99±0.00 55.97±0.12 54.93±0.00 61.48±0.21
PUR 59.99±0.12 64.73±0.39 59.12±0.29 64.45±2.69 60.41±0.02 60.36±0.05 67.88±0.82 62.38±2.02 67.25±0.02 65.88±0.00 71.61±0.17
FSC 46.55±0.17 47.27±0.89 38.90±0.12 43.67±1.79 39.72±0.01 40.50±0.05 44.40±1.28 56.56±0.00 45.42±0.08 48.54±0.01 48.68±0.17

WebKB

NMI 1.91±0.28 2.88±0.16 2.56±0.00 10.37±4.58 16.44±0.01 2.01±0.00 1.86±0.23 4.43±3.66 18.61±0.08 14.70±0.06 9.47±0.00 42.15±0.00
ACC 56.33±0.47 61.57±0.84 66.14±0.00 72.26±6.05 76.99±0.02 50.53±0.00 63.26±2.74 78.21±0.00 78.69±0.06 75.60±0.11 56.50±0.00 89.06±0.00
PUR 78.12±0.00 78.12±0.00 78.12±0.00 79.47±0.93 80.56±0.01 78.12±0.00 78.12±0.00 78.63±1.14 80.66±0.06 80.26±0.00 78.12±0.00 89.06±0.00
FSC 59.53±0.15 60.02±0.63 63.52±0.00 70.30±5.75 72.77±0.02 57.47±0.00 63.06±2.07 79.40±0.00 73.41±0.07 72.22±0.10 59.35±0.00 85.78±0.00

HW

NMI 51.45±0.18 39.98±2.13 53.97±0.43 65.24±6.81 46.32±0.49 53.88±0.90 69.01±1.81 45.27±4.06 66.02±0.24

MOE

73.43±0.72 69.73±0.44

ACC 49.99±0.48 44.31±2.69 64.93±0.66 73.09±8.86 50.19±0.62 54.64±1.15 76.07±4.84 39.79±5.02 74.31±0.23 63.68±2.02 80.20±0.62
PUR 53.72±0.12 45.85±2.52 65.24±0.56 73.51±8.39 50.35±0.64 55.22±1.04 77.39±3.75 40.48±5.03 75.56±0.19 64.46±1.56 80.20±0.62
FSC 38.27±0.40 32.97±1.90 50.92±0.50 62.15±8.01 41.00±0.44 47.09±0.82 65.93±3.00 36.76±3.70 62.62±0.26 63.43±1.20 67.16±0.69

Handwritten

NMI 50.75±0.22 39.95±1.99 64.90±0.68 65.34±4.59 45.86±0.63 54.67±0.69 71.07±2.55 43.85±4.29 66.21±0.53

MOE

74.45±0.66 70.87±0.41

ACC 49.79±0.63 43.95±2.74 71.01±1.34 72.74±5.97 50.05±0.95 56.02±1.50 77.62±6.16 38.27±4.89 76.51±0.67 66.51±1.70 80.90±0.41
PUR 53.12±0.15 45.49±2.34 72.43±1.00 73.03±5.74 50.36±0.91 57.11±1.41 79.12±4.70 38.98±4.36 77.13±0.53 67.48±1.31 80.90±0.41
FSC 37.65±0.37 33.07±1.86 60.80±0.94 62.05±5.92 40.09±0.63 47.58±0.90 68.20±4.12 35.55±3.66 63.94±0.48 65.50±1.51 68.73±0.64

Hdigit

NMI 8.73±0.17 36.71±1.92 43.94±0.14 48.72±2.18 53.26±0.18 36.85±0.30 48.34±1.23 57.81±1.44 53.00±0.15 82.52±0.03 46.64±1.15 61.85±0.08

ACC 14.27±0.19 43.46±3.08 53.56±0.17 58.87±5.34 64.15±0.36 44.39±0.56 59.10±2.69 64.37±4.06 66.51±0.19 88.21±0.09 49.40±1.41 77.36±0.06

PUR 16.17±0.15 45.47±2.48 55.03±0.14 60.91±3.77 65.37±0.30 45.32±0.54 61.36±1.75 66.71±2.68 67.35±0.17 88.57±0.03 49.49±1.31 77.36±0.06

FSC 17.87±0.02 29.60±1.50 40.34±0.15 46.32±2.88 51.04±0.28 32.91±0.35 46.14±1.64 53.38±2.49 51.72±0.20 82.38±0.06 38.38±0.76 62.83±0.07

NUSWIDEOBJ

NMI

MOE

11.97±0.37

MOE

9.91±0.07

MOE

10.00±0.16

ACC 13.83±0.41 12.00±0.19 12.66±0.14

PUR 23.67±0.45 21.50±0.10 21.55±0.17

FSC 8.59±0.16 7.43±0.06 7.70±0.06

Cifar10

NMI

MOE

91.04±0.00

MOE

91.35±0.00
ACC 96.38±0.00 96.54±0.00
PUR 96.38±0.00 96.54±0.00
FSC 93.01±0.00 93.32±0.00

MNIST

NMI

MOE

96.03±0.00

MOE

96.16±0.00
ACC 98.64±0.00 98.70±0.00
PUR 98.64±0.00 98.70±0.00
FSC 97.31±0.00 97.43±0.00

nq is close to n. In other words, it will take O(n2) com-
plexity when the incomplete data ratio is relatively low. To
decrease the computational complexity to O(n) for any incom-
plete data ratios, we note that ∥XqMq −HqTqEMq∥2F =∥∥XqMqM

⊤
q −HqTqEMqM

⊤
q

∥∥2
F

. Further, we have that
EMqM

⊤
q equals to E ⊙ Gq . Therefore, we can trans-

form the coefficient item ∥XqMq −HqTqEMq∥2F as
∥Xq ⊙Wq −HqTq (E⊙Gq)∥2F . Since the calculation of
E ⊙ Gq takes O(mn) time complexity, computing the item
∥Xq ⊙Wq −HqTq (E⊙Gq)∥2F will need O(dqn + mn +
dqm

2 + dqmn). Consequently, optimizing α takes O(dmn)
time overhead per iteration.

Our proposed CCA-IMC is summarized in Algorithm 1
where obj(t) is the objective value at the t-th iteration.

C. Discussion

1) Time Complexity Analysis: The time expenditure of our
devised CCA-IMC consists of optimizing all Hq , Tq , E and
α. During optimizing {Hq}vq=1, it takes O(dnm) complexity
to acquire the optimal solution. During optimizing {Tq}vq=1,

Algorithm 1 CCA-IMC
Input: Incomplete multiview data {Xq ∈ Rdq×n}vq=1, indica-
tor vectors {bq ∈ Rnq×1}vq=1, hyper-parameter λ;
Initialize: Hq , Tq , E, α;

1: t=0;
2: repeat
3: t=t+1;
4: Update Hq using Eq. (8);
5: Update Tq using Eq. (12);
6: Update E using Eq. (20);
7: Update α using Eq. (22);
8: until obj(t−1)−obj(t)

obj(t)
≤ 10−4;

Output: Clustering results by running spectral methods on E;

it costs O(mnd). Optimizing E and α costs O(mdn) and
O(dmn) respectively. As a result, CCA-IMC’s time complex-
ity is proven to be O(dmn). Evidently, it is linear with respect
to the number of samples n.
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Fig. 4. The clustering results of twelve algorithms in terms of NMI and ACC under diverse IDRs.

2) Space Complexity Analysis: The space expenditure of
our CCA-IMC mainly involves Hq ∈ Rdq×m, Tq ∈ Rm×m,
E ∈ Rm×n and α ∈ Rv . Hence, CCA-IMC’s space complex-
ity is dm+vm2+mn+v. Due to d ≪ n, v ≪ n and m ≪ n,
CCA-IMC owns O(n) space complexity.

3) Convergence Analysis: During alternatively optimizing
Hq , Tq , E and α, their optimal value can be analytically
obtained by Eqs. (8), (12), (20) and (22) respectively. This
indicates that the objective value of Eq. (5) decreases mono-
tonically as iteration goes on. In addition to this, the objective
function of Eq. (5) has the lower bound, for example 0. Given
the alternating optimization theory [69], therefore, our CCA-
IMC is convergent.

IV. EXPERIMENT

A. Datasets and Compared Algorithms

Datasets: We implement experiments on ten popularly used
datasets, and their detailed descriptions are as following:

1) ORL1: This image dataset is taken from distinct lighting
and facial expressions, and consists of 400 samples from
40 classes. The feature dimensions of 3 views are 4096,
3304, 6750 respectively.

2) NGs2: This news dataset is taken from different news-
group documents, and consists of 500 samples from 5

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
2http://qwone.com/jason/20Newsgroups/
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Fig. 5. The clustering results of twelve algorithms in terms of PUR and FSC under diverse IDRs.

classes. The feature dimensions of 3 views are all 2000.
3) Prokaryotic3: This specie dataset is collected from di-

verse prokaryotic cells, and consists of 551 samples from
4 classes. The feature dimensions of 3 views are 438, 3
and 393 respectively.

4) WebKB4: This webpage dataset is collected from distinct
websites, and consists of 1051 samples from 2 classes.
The feature dimensions of 2 views are 2949 and 334
respectively.

5) HW5: It is composed of 2000 image samples that are

3https://www.bacterio.net/
4https://lig-membres.imag.fr/grimal/data.html
5https://archive.ics.uci.edu/ml/datasets/Multiple+Features

from 6 views and 10 classes. Their dimensions are 216,
76, 64, 6, 240 and 47 respectively.

6) Handwritten6: It is composed of 2000 handwritten nu-
meral samples (i.e., “0” ∼ “9”) that are from 6 views
and 10 classes. Their dimensions are 240, 76, 216, 47,
64 and 6 respectively.

7) Hdigit7: There are 10000 image samples from 2 views
and 10 classes. One view is with 784 dimensions while
the other is with 256 dimensions.

6https://archive.ics.uci.edu/ml/datasets/Multiple+Features
7http://mkl.ucsd.edu/dataset/
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Fig. 6. Visualization of the representations learned by above mentioned IMC algorithms on dataset Handwritten.
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Fig. 7. Execution time comparison between twelve algorithms on ten benchmark datasets. All results are shown in the form of log2.

8) NUSWIDEOBJ8: There are 30000 web samples that are
from 5 views and 31 classes. Their dimensions are 65,
226, 145, 74 and 129 respectively.

9) Cifar109: This dataset contains 50000 color image sam-
ples totally over 10 classes. The feature dimensions of
3 views are 512, 2048 and 1024 respectively.

10) MNIST10: This dataset contains 60000 handwritten im-
age samples totally over 10 classes. The feature dimen-
sions of 3 views are 342, 1024 and 64 respectively.

Notice that the number of samples in the above datasets
ranges from 400 to 60000. In current IMC, this size span is
already quite large.

Compared Algorithms: To demonstrate the superiority of
our CCA-IMC, we compare it with the following representa-
tive algorithms.

1) BSV [27]: This method imputes the missing instances
with average value, and subsequently derives the class
indicators by separately calculating the k way partition-
ing on the spectral graph of each incomplete view.

2) MIC [33]: This method minimizes the disagreement
among view-specific features by the consensus matrix,
and embeds ℓ1,2 regularization constraint into weighted

8https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-
WIDE.html

9http://www.cs.toronto.edu/kriz/cifar.html
10http://yann.lecun.com/exdb/mnist/

NMF to enhance the robustness of the learned potential
representation to noises.

3) MKKM-IK [29]: This method alternatively performs fill-
ing and clustering operations in one unified framework,
and guides partial kernels imputation with the clustering
results from the previous iteration.

4) DAIMC [37]: This method decreases the impact of
incomplete entries by building a common basis matrix
for all views using ℓ1,2 regression, and employs semi-
NMF scheme to increase the ability to cope with more
than two views.

5) UEAF [35]: This method explicitly exploits the lo-
cal structure between data by introducing the locality-
conserved reconstruction item, and learns a shared graph
by the reverse graph regularization to align views.

6) IK-MKC [43]: This method integrates kernel imputation
and data grouping into a single-level optimization pro-
cess, and fills absent kernel matrices mutually to further
increase the clustering performance.

7) EEIMVC [44]: This method infers base clustering ma-
trices rather than similarity ones, and utilizes the prior
knowledge that consensus matrix is located in the neigh-
borhood of predetermined one to improve the discrimi-
nation of consensus matrix.

8) FLSD [39]: This method explores local geometric infor-
mation between views using the graph-regularized con-
straint, and employs the semantic consistency regularizer
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Fig. 8. Visualization of the restored view-specific bipartite graphs and permutation matrices between views on dataset Handwritten. Permutation2-1 is the
permutation relationship between views 2 and 1. Taking (a) (b) (g) as an example, after multiplying (g), anchors on (a) are correctly matched to these on (b).
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Fig. 9. Illustration of the effectiveness of our permutation strategy. “WoP” represents the results obtained without using our permutation strategy while “WP”
represents the results obtained with our permutation strategy.

to form the unified representation for all views.
9) CBG [38]: This method adopts the projection strategy to

alleviate the problem of anchor dimension inconsistency,
and provides a probability interpretation for the unified
anchor graph from the perspective of random walk.

10) PIMVC [67]: This method tackles the new samples via
a group of projections generated by a consensus graph
regularizer, and alleviates the information imbalance
among views by capturing the unified characteristics
within a low-dimensional subspace.

11) BGIMVSC [68]: This method embeds the clustering
indicators into a graph learning model to directly con-
duct the data partitioning operation, and relaxes the
spectral framework to obtain the probability agreement
representation so as to make the results stable.

B. Experimental Setting

We generate the incomplete versions of aforementioned
datasets according to the strategy in [38]. The incomplete data
ratio (IDR) is set from 10% to 90% with 10% as the interval.
For these compared algorithms, we download the source code

from the authors’ websites, and tune the hyper-parameters
based on the guidelines in corresponding paper. For our CCA-
IMC, we adjust λ in [10−2, 10−1, 100, 101, 102] and the anchor
number in [1, 2, 3, 4, 5]k respectively. Additionally, we run
each algorithm 20 times so as to alleviate the randomness, and
count the mean values and corresponding standard deviations.
We adopt four popular metrics, NMI, ACC, Purity (PUR),
Fscore (FSC), to evaluate the algorithm performance. The
definitions of NMI, ACC, PUR, FSC are respectively

NMI =
M(p, q)

(S(p)S(q))
1
2

, ACC =
1

n

n∑
i=1

f (pi, g (qi)) ,

PUR =
1

n

k∑
i=1

nici, FSC =
PR×RE

1
2 (PR + RE)

,

(24)

where p and q represent the predicated label variable and true
label variable. M(p, q) is the mutual information with respect
to p and q. S(p) measures p’s entropy. pi is the predicated label
for sample xi while qi is its true label. The function g plays a
role in permuting the true labels by the KuhnMunkres method.
The function f is that f(a, b) = 0 if a ̸= b else 1. ni is the
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Fig. 10. Clustering performance comparison between traditional heuristic anchor strategy and our optimized anchor strategy.
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Fig. 11. Clustering performance comparison between traditional equal weighting and our adaptive weighting.

number of samples in the i-th cluster while ni,j is the number
of samples, which falls into the j-th cluster, in the i-th cluster.
ci,j = ni,j/ni and ci = max{ci,j}. RE = tp/(fn + tp) and
PR = tp/(fp + tp) where fn means false-negative, fp means
false-positive, and tp means true-positive.

C. Results Analysis

We present the clustering results of these twelve IMC algo-
rithms under IDR 10% ∼ 90% in Figs. 4, 5, and the average
results in Table I respectively. In Table I, the ranking No.1
results are emphasized in black while the ranking No.2 results
are underlined. The notation MOE represents the memory
overflow error. From Figs. 4, 5 and Table I, we have some
observations:

1) Our devised CCA-IMC has the ability to produce the
best clustering results in most situations. Taking al-
gorithm CBG for example, which is with a superior
performance against other IMC methods, our CCA-
IMC makes the average improvements of 1.2%, 4.89%,
2.94%, 23.54%, 3.71%, 4.66%, 8.85%, 0.09%, 0.31%

and 0.13% than CBG in NMI on these incomplete
datasets respectively. In metrics ACC and PUR as well
as FSC, CCA-IMC can also exhibit clear superiorities.
These demonstrate that our CCA-IMC is effective.

2) The standard deviation of the compared IMC algorithms
is generally larger than ours in most cases. For instance,
on datasets Handwritten and Hdigit, the deviation values
of ACC obtained by DAIMC, EEIMVC and FLSD are
5.56%, 5.28%, 5.75%, 2.63%, 4.48% and 4.00% higher
than ours, respectively. Among those techniques, CCA-
IMC typically enjoys small standard deviation in terms
of the four metrics. These results suggest that our CCA-
IMC is relatively robust to diverse incomplete cases
compared to other IMC algorithms.

3) With the increase of IDR, the clustering performance
of almost all methods is gradually decreasing. When
the incompleteness ratio of dataset is fairly high, all
methods demonstrate relatively undesirable clustering
results. This gives an empirical evidence that IMC is
more intractable than (complete) multiview clustering.
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Fig. 12. Sensitivity of CCA-IMC to the hyper-parameter λ.

In addition, compared to these strong IMC competitors,
our CCA-IMC still receives encouraging performance,
even under quite large incomplete ratio. This illustrates
that our proposed CCA-IMC is more suitable for IMC.

4) Compared to methods like MKKM-IK, UEAF, IK-MKC
and EEIMVC which adopt subspace or kernel strategy
to handle the IMC problem, our method based on bi-
partite graph mechanism outperforms them consistently.
CBG projects anchors into the same dimension and
thereby produces the consensus bipartite graph, however,
projection operation will lead to information loss and
deteriorate the diversity of each view, bringing about
sub-optimal performance. These experimental results
state that our consensus bipartite graph constructed by
view-specific anchors is more preferable.

5) Although PIMVC achieves superior clustering results to
ours on Hdigit, it fails to properly work on datasets
Prokaryotic, HW and Handwritten that are only with
small size, which is due to the fact that it requires the
data dimension to be greater than the number of clusters.
This limitation causes it to suffer from relatively narrow
applicability. DAIMC makes slightly better results on
NUSWIDEOBJ than us, possibly because it introduces
the ℓ2,1 regularizer to decrease the influence of partial
samples, and enforces the basis matrices to be aligned
so as to exploit the global information inside data.

6) On some large-scale datasets like Cifar10 and MNIST,
methods DAIMC, EEIMVC, FLSD and etc encounter
the memory overflow error due to the corresponding
expensive space complexity. This highlights that they
are powerless in face of large-scale IMC problems. As a
comparison, our method can not only perform normally
but generate impressive results on these datasets, which
illustrates that our CCA-IMC is source-saving and more
practical for IMC tasks.

In summary, our CCA-IMC wins the preferable performance
and is more suitable for IMC tasks even on large-scale datasets
or/and under diverse incomplete cases in comparison with
other strong IMC algorithms. For the purpose of further

validating the advantages of the devised CCA-IMC, we draw
the learned representation of these IMC methods using t-
SNE visualization algorithm, as presented in Fig. 6. One can
observe that our CCA-IMC enjoys more distinguishable cluster
structure, which means that CCA-IMC can effectively partition
data into different groups where samples in the same one group
have quite similar characteristics while in different groups
having fairly distinct characteristics.

D. Execution Time

In Section III-C we have proven theoretically that CCA-
IMC has linear computational complexity. For the sake of
verifying its efficiency, we count the execution time of these
twelve IMC algorithms on the mentioned-above datasets, and
show the results in Fig. 7. We see that

1) As the number of samples increases, the execution
time of these IMC algorithms is gradually increasing.
Especially on dataset Hdigit, all algorithms take more
time. When the sizes of datasets are close to each other,
larger dimension dataset consumes more time.

2) MIC suffers from the slowest running speed, which is
mainly due to its cubic time complexity. Other meth-
ods like MKKM-IK, EEIMVC, FLSD and etc report
memory overflow error on datasets NUSWIDEOBJ,
Cifar10 and MNIST. These demonstrate that they are
not applicable to large-scale problems.

3) Our method is able to run on all datasets, and is faster on
HW, Handwritten, Cifar10 and etc than the rest of IMC
algorithms, which clearly illustrates our wide scalability
and high efficiency. Method CBG requires slightly less
time compared to ours on certain datasets, however,
it can not take advantage of complementary features
between views, causing relatively limited performance.

In short, both theory and experiments provide a great
demonstration that our CCA-IMC enjoys fewer execution time,
and is more appropriate for handling IMC tasks.
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Fig. 13. Sensitivity of CCA-IMC to the number of anchors.

1 2 3 4 5 6

Iteration Number

131.2

131.3

131.4

131.5

131.6

O
bj

ec
tiv

e

(a) ORL

0 5 10 15 20 25

Iteration Number

168

170

172

174

176

178

O
bj

ec
tiv

e

(b) NGs

0 2 4 6 8 10 12 14

Iteration Number

242

244

246

248

250

252

254
O

bj
ec

tiv
e

(c) Prokaryotic

0 5 10 15 20

Iteration Number

500

510

520

530

540

O
bj

ec
tiv

e

(d) WebKB

0 5 10 15 20

Iteration Number

0

50

100

150

200

250

O
bj

ec
tiv

e

(e) HW

1 2 3 4 5 6 7

Iteration Number

375

380

385

390

O
bj

ec
tiv

e

(f) Handwritten

0 2 4 6 8 10 12

Iteration Number

5900

5950

6000

6050

6100

6150

6200

O
bj

ec
tiv

e

(g) Hdigit

0 10 20 30 40

Iteration Number

5500

5520

5540

5560

5580

5600

5620

O
bj

ec
tiv

e

(h) NUSWIDEOBJ

0 5 10 15 20 25 30

Iteration Number

1.25

1.3

1.35

1.4

1.45

O
bj

ec
tiv

e
104

(i) Cifar10

0 5 10 15 20 25 30 35

Iteration Number

1.465

1.47

1.475

1.48

1.485

O
bj

ec
tiv

e

104

(j) MNIST

Fig. 14. The objective of CCA-IMC on ten datasets.

E. Ablation study for permutation strategy

For verifying that anchors are correctly matched through
our permutation strategy, we restore the view-specific bipartite
graphs and the permutation matrices between different views
based on the learned consensus bipartite graph and view-
specific permutation matrices, as presented in Fig. 8. One can
observe that by the acquired permutation relationship, anchors
on different views are correctly matched. For example, anchor
8 on view 6 is mismatched to anchor 3 on view 1. After
multiplying view 6 with Permutation1-6, anchor 8 on view 6
will become anchor 3. Additionally, we also conduct a series of
experiments without employing the permutation strategy while
keeping all other conditions the same. The contrast results are
reported in Fig. 9. It suggests that the permutation strategy
indeed makes clear performance increase. Figs. 8 and 9 give
a vivid illustration that our permutation strategy is effective.

F. Ablation study for optimizable anchor strategy

In this paper, we generate anchors by optimization rather
than by the heuristic strategy like k-means. This makes
anchors able to negotiate with the bipartite graph so as to
promote each other. We organize some ablation experiments

to exhibit the superiority of optimizable anchor strategy. The
experimental results are summarized in Fig. 10. From this
figure, one can get that the results based on anchor optimiza-
tion have obvious advantages. These results give an empirical
evidence that our anchor optimization strategy is effective and
conductive to bringing performance improvement.

G. Ablation study for adaptive view weighting strategy

Different from previous methods that treat each view
equally, we associate each view with a weight variable to
automatically measure its importance. This is primarily be-
cause the feature dimensions between views are generally
diverse, and equal weighting could weaken the contribution of
certain views, leading to limited performance. To validate its
effectiveness, we design ablation experiments in terms of view
weights, and present the results in Fig. 11. Evidently, adap-
tive weighting receives consistent improvement compared to
equal weighting. This confirms that introducing adaptive view
weighting strategy is beneficial for decreasing the impact of
unbalanced features and improving the clustering performance.
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H. Parameter Sensitivity

The hyper-parameter λ plays a role in balancing recon-
struction error and bipartite graph generation. To investigate
its effect, we count the clustering performance of CCA-IMC
under different λ, as suggested in Fig. 12. We can observe that
most of our results are superior to that of existing algorithms,
and within a wide hyper-parameter scope, the results are
still worth having and also do not fluctuate dramatically.
These indicate that CCA-IMC to some extent is robust to
the variations of hyper-parameter λ. Besides, CCA-IMC’s
performance could vary with the different number of anchors.
To explore the sensitivity of CCA-IMC with respect to the
number of anchors, we conduct some contrast experiments
with diverse setting of the anchor number, as shown in Fig. 13.
One can see that the performance curves in most situations
are stable, which illustrates that the number of anchors do not
bring dramatical influence on CCA-IMC’s performance.

I. Algorithm Convergence

In addition to producing satisfactory results, an algorithm
also needs to own the convergence property. We have demon-
strated CCA-IMC’s convergence from theory in Section III-C,
and here we are devoted to validating its convergence from
experiments. To this end, we record the objective values of
CCA-IMC on the datasets mentioned earlier, and draw them in
Fig. 14. One can see that as the iteration goes on, the objective
value is monotonically decreasing and gradually reaching into
a stable state. These results experimentally illustrate that the
proposed CCA-IMC is with convergence characteristic.

V. CONCLUSION

In this paper, to address the anchor mismatching prob-
lem in incomplete multiview clustering, we design a named
CCA-IMC algorithm, which transforms anchors directly in
their original dimension space according to the shared graph
structure. Different from previous separated mechanism, CCA-
IMC owns a joint-optimization mechanism that alternatively
updates anchors and permutation matrices as well as the
consensus bipartite graph, boosting the clustering quality.
Also, theoretical and experimental evidences illustrate that
CCA-IMC has linear complexities and is applicable to large-
scale tasks. In future work, we will attempt to combine binary
clustering [70] and large-scale graph learning together so as
to bring further improvements in clustering results and faster
running speed for IMC problems.
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