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Knowledge Graph Contrastive Learning Based on
Relation-Symmetrical Structure
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and Xinwang Liu , Senior Member, IEEE

Abstract—Knowledge graph embedding (KGE) aims at learning
powerful representations to benefit various artificial intelligence
applications. Meanwhile, contrastive learning has been widely
leveraged in graph learning as an effective mechanism to enhance
the discriminative capacity of the learned representations. How-
ever, the complex structures of KG make it hard to construct
appropriate contrastive pairs. Only a few attempts have integrated
contrastive learning strategies with KGE. But, most of them rely
on language models (e.g., Bert) for contrastive pair construction
instead of fully mining information underlying the graph struc-
ture, hindering expressive ability. Surprisingly, we find that the
entities within a relational symmetrical structure are usually sim-
ilar and correlated. To this end, we propose a knowledge graph
contrastive learning framework based on relation-symmetrical
structure, KGE-SymCL, which mines symmetrical structure in-
formation in KGs to enhance the discriminative ability of KGE
models. Concretely, a plug-and-play approach is proposed by tak-
ing entities in the relation-symmetrical positions as positive pairs.
Besides, a self-supervised alignment loss is designed to pull together
positive pairs. Experimental results on link prediction and entity
classification datasets demonstrate that our KGE-SymCL can be
easily adopted to various KGE models for performance improve-
ments. Moreover, extensive experiments show that our model could
outperform other state-of-the-art baselines.

Index Terms—Graph learning, knowledge graph embedding,
self-supervised contrastive learning, symmetrical property.

I. INTRODUCTION

KNOWLEDGE graphs (KGs), as a graphical representation
of human knowledge, benefit many artificial intelligence

applications, such as question answering [1], social recommen-
dation [2], [3], [4], logic reasoning [5], [6], text generation [7],
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[8] and code analysis [9]. Motivated by their success, researchers
have recently focused on developing better knowledge graph
embedding (KGE) models to generate high-quality entity and
relation representations for performance improvements.

Recent KGE models can be roughly categorized into three
types [10], [11], [12], [13] as follows: (1) translational distance
models, e.g., TransE [14], RotaE [15], QuatE [16], DualE [17],
HAKE [18], (2) semantic matching models, e.g., DisMult [19],
RESCAL [20], ComplEX [21], ConvE [22], (3) GNN-based
models, e.g., RGCN [23], KBGAT [24], COMPGCN [25].
Motivated by the great success of graph contrastive learning,
researchers attempt to integrate contrastive learning mechanisms
with KGE for more powerful representations [26], [27]. Gen-
erally speaking, the essence of contrastive learning is to mine
the hidden information between samples by pulling together
similar samples and pushing away dissimilar samples. Thus,
constructing high-confidence contrastive pairs is important to
the discriminative ability of contrastive learning models. Until
now, only a few works have attempted to integrate contrastive
learning strategies with KGE models, such as SimKGC [27].
However, because of the complex structures in the knowledge
graphs, these methods usually calculate the semantic similarity
via language models (e.g., Bert) to construct the contrastive
pairs instead of fully mining information underlying the graph
structures like previous graph contrastive learning models.

Although proven effective, the contrastive KGE models in this
manner have two apparent limitations. First, the adopted lan-
guage model can easily affect the performance of these models,
i.e., inaccurate contrastive pair construction with inappropriate
language models. As a consequence, the performance of these
models would drop drastically when language models are not
finely trained. Second, with the concrete and complicated rela-
tionships of entities in the given KG, only relying on the features
generated by language models may result in inaccurate semantic
estimation. For example, entity Bob has opposite semantics with
entity Andy and Mike based on triplets in the given KGs (See
Fig. 1). However, without considering such structural informa-
tion, the language models will treat them as similar entities since
they all represent human names, which is inaccurate in the given
circumstance. The noises caused by such inaccuracy will further
hinder the contrastive model for better discriminative ability,
which is studied in various works [28], [29], [30] on graphs.

A more stable and general criterion for contrastive KGE
should be developed to solve the problem, such as the graph
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Fig. 1. Illustration of the neighborhood and relation-symmetrical structures,
where relationships (i.e., play, teach, student_of) are symmetrical (See Def. 2).
Sub-Figure (a) and (b) show the differences between neighborhood structures in
homogeneous graphs and KGs. The semantics of neighbors may be opposite in
KGs, while they are usually assumed to be similar in homogeneous graphs. Sub-
Figure (c) shows that symmetrical entities in relation-symmetrical structures will
be similar in KGs.

structures. Neighbors are usually treated to have similar seman-
tics in existing homogeneous graph contrastive learning meth-
ods, which benefits the positive contrastive pair construction.
However, it is not suitable for knowledge graphs as shown in
Fig. 1(b). Moreover, we assume that such semantic similarity
underlying the neighborhood structures in homogeneous graphs
is actually caused by the symmetrical positions of the neighbors.
Inspired by it, we observe that the relation-symmetrical structure
(See Def. 2), which can be commonly found in KGs, will also
bring a similar property. This specific structure information
will be a good criterion for contrastive KGE. More concretely,
entities located in relation-symmetrical positions are usually
similar and correlated, and this property can be utilized to
construct contrastive positive pairs. For example, the Bob and
Jones are relation-symmetrical about Basketball in Fig. 1(c),
which reveals the similar semantics between Bob and Jones (i.e.,
both playing basketball). The observed property is overlooked
by the existing contrastive KGE models, thus leading them to
sub-optimal performance.

Following the above idea, we propose a knowledge graph
contrastive learning framework based on relation-symmetrical
structures, termed KGE-SymCL. It leverages the symmetrical
structural information to enhance the discriminative ability of
KGE models. Concretely, a novel plug-and-play approach is
designed by taking the entities in the relation-symmetrical posi-
tions as positive pairs. Besides, a self-supervised alignment loss
is designed to pull together the contrastive positive pairs for more
expressive representations. Extensive experimental results on
datasets have verified the generalization and effectiveness of our
framework. Moreover, the proposed SymCL is easily adopted
into the existing KGE models for different downstream tasks.
The main contributions of this paper are summarized as follows:
� We propose a knowledge graph contrastive learning frame-

work based on relation-symmetrical structures, termed
KGE-SymCL, which is the first work to mine the structural
semantics underlying the symmetrical patterns in KGs.

� We define Relation-Symmetrical Structures based on the
observed symmetry patterns, where positive samples with
similar semantics can be naturally found. Besides, we
further design a plug-and-play strategy for positive con-
trastive pair construction, i.e., the entities in the relation-
symmetrical positions are treated as the positive pairs.

� We integrate our KGE-SymCL with typical KGE baselines
and conduct experiments for both link prediction and en-
tity classification. The promising performances verify the
effectiveness and generalization of the proposed frame-
work. Moreover, we also compare our KGE-SymCL to
other KGE models, demonstrating the superiority of our
approach.

The rest parts of the paper are well organized as follows:
Section II summarizes the related works. Section III compre-
hensively introduces our methodology, termed KGE-SymCL.
The experiments and analysis for our framework from various
aspects are presented in Section IV. Section V finally concludes
the paper.

II. RELATED WORK

A. Knowledge Graph Embedding

Knowledge Graph Embedding (KGE) aims to encode the
entities and relations to the low dimensional vector or matrix
space. Recent existing KGE models can be roughly categorized
into three types [10], [10], [11], [31], [32], [33], [34]. (1)
Translational distance models leverage distance-based scoring
functions and treat the relationship as a translational opera-
tion in different latent space, e.g., TransE [14], RotaE [15],
QuatE [16], DualE [17], HAKE [18], HousE [35], and etc.
Among them, TransE [14] treats the relation as the addition
operation between entities, while RotaE [15] regards it as the
rotation operation. Moreover, HousE [35] involves a novel
parameterization based on the designed Householder transfor-
mations for rotation and projection. (2) Semantic matching
models, including RESCAL [20], DisMult [19], ConvE [22],
SimplE [36], CrossE [37], QuatE [16], DualE [17], are devel-
oped based on similarity scoring functions. RESCAL [20] first
makes use of the bilinear function to associate entities with
vectors to capture their latent semantics. Besides, DisMult [19]
proposes a multiplication model to represent the likelihood of
the triplets. ConvE [22] applies a neural network for similarity
modeling. Besides, the advantage of quaternion representations
is leveraged by QuatE [16] to enrich the correlation informa-
tion between head and tail entities based on relational rotation
quaternions. Inspired by it, DualE [17] is proposed to gain a
better expressive ability by projecting the embeddings in dual
quaternion space.(3) GNN-based models, including RGCN [23],
COMPGCN [25], KBGAT [24], SCAN [38], RGHAT [39]
and KE-GCN [40], leverage GNN to capture the structural
characteristics of KGs. For example, RGCN [23] introduces a
relation-specific transformation to integrate relation information
with message aggregation. RGHAT [39] is designed with a
two-level attention mechanism to handle both relations and
entities separately. After that, KE-GCN [40] proposes a joint
propagation method to update the embedding of nodes and edges
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simultaneously. COMPGCN [25] proposes various composition
operations for triplet scoring.

B. Graph Contrastive Learning

Contrastive Learning (CL), aiming at mining the hidden in-
formation in intra-data in a self-supervised manner, has achieved
great success in many important fields like natural language
processing [41], [42], [43], computer vision [44], [45], [46], [47],
[48], and etc. More recently, Graph Contrastive Learning (GCL)
has been a fast-growing field among these research directions.
The early works [49], [50] demonstrate the effectiveness of
the mutual information maximization principle [51], [52] in
the node and graph level tasks. After that, GRACE [53] and
GraphCL [54] are proposed to pull together the same samples
across augmented views and push away the others. However, the
large number of negative samples leads to high computational
and memory costs. To solve these issues, researchers propose
various negative-sample-free methods by redundancy reduction
principles [55], [56], [57] and asymmetrical strategies [58], [59].
Although verified effectiveness, the promising performance of
previous works highly depends on the choice of data augmen-
tation schemes, leading to cumbersome manual trial-and-error.
In order to alleviate this problem, the learnable augmentation
methods [60], [61], such as AutoGCL [62] and iGCL [63], are
increasingly proposed to generate different views automatically.
Also, GCA [64] demonstrates the effectiveness of adaptive data
augmentations. In addition, the augmentations-free methods are
also designed to replace augmentations by discovering the local
structural and the global semantics information [59], [65], de-
veloping parameter un-shared encoders [66], or perturbing one
of the encoders [67]. More recently, hard sample mining [68],
[69] has become another interesting research topic in GCL. To
be specific, GDCL [70] utilizes the clustering pseudo labels to
correct the bias of the negative sample selection in the attribute
graph clustering task. ProGCL [71] builds a more suitable cri-
terion to handle the hardness of negative samples together with
similarity by a designed probability estimator.

C. Contrastive Learning on Knowledge Graph

Inspired by the success of graph contrastive learning (See
Section II-B), only a few contrastive KGE models are proposed
but are still in the early stage. The existing models, such as
SimKGC [27], construct the contrastive pairs by calculating
the semantic similarity estimated by language models, such
as Bert [72], etc. Samples with high semantic similarity tend
to be combined as positive pairs. Although proven effective,
the contrastive KGE models in this manner have two apparent
limitations. First, the adopted language model can easily affect
the performance of these models, i.e., inaccurate contrastive pair
construction with inappropriate language models. As a conse-
quence, the performance of these models would drop drastically
when language models are not finely trained. Second, with the
concrete and complicated relationships of entities in the given
KG, only relying on the features generated by language models
may result in inaccurate semantic estimation. For example, entity
Bob has opposite semantics with entity Andy and Mike based
on triplets in the given KGs (See Fig. 1). However, without

considering such structural information, the language models
will treat them as similar entities since they all represent human
names, which is inaccurate in the given circumstance. The noises
caused by such inaccuracy will further hinder the contrastive
model for better discriminative ability. Previous works [28],
[29], [30], [73], [74], [75], [76] on graphs have already verified
this phenomenon. Comparatively, the structural semantics, as
more stable semantics underlying all KGs, are rarely used in
the existing attempts at integrating KGE and CL due to the
complex structures of KGs. The models, such as KGCL [77],
are developed for specific tasks, like recommendation systems.
Thus these models have poor generalization on other tasks. To
alleviate the above problems, we propose a novel KG con-
trastive learning framework, termed KGE-SymCL, leveraging
the symmetry-structural semantics, which is also easily adopted
to other KGE models and scaled well on various tasks.

III. METHOD

In this section, the details of our relation-symmetrical struc-
ture based contrastive knowledge graph framework termed
KGE-SymCL are introduced from two aspects, i.e., Relation-
Symmetrical Structure Extraction and Relation-Symmetrical
Contrastive Learning (See Fig. 2). Before that, we will first
introduce the preliminaries for the method.

A. Preliminary

Knowledge graph (KG) is composed of the fact triplets,
denoted as G = {(eu, rt, ev) | eu, ev ∈ E , rt ∈ R}, where E is
the set of entities (i.e., nodes), R is the set of relations (i.e., edge
labels), eu and ev represent the head and tail entity respectively,
and rt is the relation between them. Based on KGs, we define
the relation sequence extraction operation as follows, which
is important to understand the relation-symmetrical structure.
Besides, we also summarize the notations in Table I.

Definition 1. Relation Sequence Extraction:. Given the
knowledge graph G = {(eu, rt, ev) | eu, ev ∈ E , rt ∈ R}
and the corresponding inversed knowledge graph Ginv =
{(ev, rt, eu) | ∀(eu, rt, ev) ∈ G}, Relation Sequence Extraction
aims to get the relation sequence RSi(eu, ev) along the ith

path between eu and ev on the Gu = G ∪ Ginv , iff the ith path
PGu

(eu, ev) between eu and ev exists in the Gu

RSi(eu, ev) = {F(reu,ei1),F(rei1,ei2), . . . ,F(rein,ev )}, (1)

where ein represents the nth entity on the ith path, reia,eib repre-

sents the relation with the head entity eia and tail entity eib in Gu.
Besides, F is the symbol function defined as follows:

F(reia,eib) =

⎧⎪⎨
⎪⎩

r+
eia,e

i
b

(ea, reia,eib , eb) ∈ G

r−
eia,e

i
b

(ea, reia,eib , eb) ∈ Ginv

, (2)

B. Relation-Symmetrical Structure Extraction

Many existing graph contrastive learning frameworks [78],
[79], [80] construct the positive pairs based on the structure-
semantic similarity of the neighborhood information. However,

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 20,2024 at 06:33:50 UTC from IEEE Xplore.  Restrictions apply. 



LIANG et al.: KNOWLEDGE GRAPH CONTRASTIVE LEARNING BASED ON RELATION-SYMMETRICAL STRUCTURE 229

Fig. 2. Framework illustration of the proposed KGE-SymCL. The core idea of KGE-SymCL is to leverage the semantic similarity of entities in relation-
symmetrical positions for constructing contrastive positive samples. The proposed algorithm constitutes two components: relation-symmetrical structure extraction
and relation-symmetrical contrastive learning. Concretely, in the relation-symmetrical structure extraction component, we extract the relation-symmetrical structures
for the anchor entity Bob and find its target entities, i.e., the positive sample candidates. Then, in the relation-symmetrical contrastive learning component, the
entities are embedded by the selected KGE encoder in the latent space. Finally, the designed self-supervised alignment loss guides the network to pull together the
positive sample pairs, thus improving the discriminative capability of samples.

Fig. 3. k-hop relation-symmetrical structure RSymi
k(ea).

TABLE I
NOTATION SUMMARY

due to the concrete yet complicated edge labels, the neighbors
may not have similar semantics, such as the cases in Fig. 1(b).

We assume that the more deep-in reason for the success of
the neighbor-based graph contrastive learning frameworks is
that they find out the nodes with symmetrical positions based
on symmetrical structures in homogeneous graphs as shown in
Fig. 1(a). Surprisingly, we observe that although such symmetri-
cal similarities between entities may not exist between neighbors

in KGs, they can still be found in the relation-symmetrical
structures defined in Def. 2, where the relationships associ-
ated with the edge directions are symmetrical. As shown in
Fig. 1(c), Bob and Jones have similar semantics since there
are relation-symmetrical patterns between them, i.e., they both
play Basketball (likewise for Bob and Andy). In other words,
such relation-symmetrical structures will naturally bring posi-
tive contrastive pairs with similar semantics. Thus, contrastive
pair construction can be reformulated into relation-symmetrical
structure extraction in KGs.

Definition 2. k-hop Relation-Symmetrical Structure: Given
the knowledge graph G = {(eu, rt, ev) | eu, ev ∈ E , rt ∈ R},
the ith k-hop Relation-Symmetrical Structure of an anchor entity
ea is denoted as RSymi

k(ea), iff. the ith structure exists

RSymi
k(ea) = ({ea, ep, et}, RSi(ea, et)), (3)

where ep is the pivot entity, et is the target entity which is
symmetrical to ea about ep. According to ep, the structure
can be separated into two parts, where the relation sequence
of the first part should be symmetrical to the second part (i.e.,
RSi(et, ep) = RSi(ea, ep)). Besides, there are k hops for both
two parts, i.e., len(RSi(ea, ep)) = len(RSi(ep, et)) = k, as
shown in Fig. 3.

Following the ideas above, we propose the relation-
symmetrical structure extraction module, which takes the knowl-
edge graph KG, the anchor entity ea and the hyper-parameter
K as inputs and outputs the target entity set Pea for the anchor
entity. Concretely, we traverse all of the structures started from
the anchor entity in the given KG and only keep the structures
satisfying Definition 2. Note that the uppercase letter K is the
upper bounds for the lowercase letter k, i.e., k ≤ K. Assume
the quantity of k-hop relation-symmetrical structures for ea
is nk, we can first get the target structure set T (ea,K) =⋃

k∈K
⋃

i∈nk
RSymi

k(ea). Then, the target entity set Pea for
the anchor entity ea is generated by picking out all the relation-
symmetrical entities in structures belonging to T (ea,K). Fig. 2
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shows an example of the procedure regarding anchor entity Bob
with K = 2.

C. Relation-Symmetrical Contrastive Learning

We design a simple yet effective contrastive learning frame-
work to leverage the hidden structural semantics underlying the
relation-symmetrical structures to improve the discriminative
ability of the KGE models. The entities in the target entity set
Pea are treated as the contrastive positive sample candidates.
Based on that, we use a self-supervised alignment loss to pull
together the positive pairs for contrastive learning. The details
will be illustrated as follows.

1) Knowledge Graph Encoding: Our model can be easily
adopted to various KGE models for entity encoding, such as
RDF2Vec [81], RGCN [23], COMPGCN [25], HAKE [18],
CompLEX-DURA [82], and etc. The selected knowledge graph
encoder g(·) aims to embed the entity e into the embedding he

in the latent space

he = g(e). (4)

2) Contrastive Positive Pair Construction: The entities in
the target entity set Pea are treated as the positive candidates
for the anchor entity ea. Considering the time efficiency, we
random sample m entities within Pea as the positive samples
and feed them into the selected KGE model together with the
KG. Therefore, positive pair set CPm(hea) of the anchor entity
ea is generated as follows:

CPm(hea) = {(hea ,h
+
eia
) | eia ∈ Pa, i ∈ [1,m]}, (5)

where h+
eia

denotes the embedding of the ith positive sample.
Fig. 2 shows an example with m set as 6.

3) Symmetrical Contrastive Loss: We design the symmetri-
cal contrastive loss based on a self-supervised alignment loss,
i.e., MSE loss, used in previous negative-free GCL methods [58],
[83] to pull together the contrastive positive pair (hea ,h

+
eia
) for

training

Lcontrastive =
1

m

m∑
i=1

MSELoss(hea
,h+

ei
a
)

=
1

m

m∑
i=1

∥∥∥∥∥
hea

‖hea
‖2

−
h+
ei
a

‖h+
ei
a
‖2

∥∥∥∥∥
2

2

= 2− 2 · 1

m

m∑
i=1

〈
hea

, h+
ei
a

〉

‖hea
‖2 · ‖h+

ei
a
‖2

, (6)

where ‖ · ‖2 denotes the L2-norm. Our network is optimized
by minimizing the contrastive loss. Concretely, the positive
samples are pulled together in the latent space in this manner,
thus improving the discriminative capability of our network.

4) Attributes of KGE-SymCL: We emphasize the attributes
of KGE-SymCL for a comprehensive understanding. Our con-
trastive learning framework offers a simple yet effective option
to construct contrastive samples only relying on the structure

Fig. 4. Illustration for entities with similar semantics which are the relational
asymmetrical.

information without using any language models. It is a more
stable and lightweight contrastive strategy for KGE.

Besides, our contrastive framework does not rely on negative
samples or graph-augmented views. From the previous obser-
vations, the positive samples can be picked up based on the
relation-symmetrical structures. However, we observe that it
is hard to get high-confident negative constructive pairs only
relying on structure information. More concretely, we cannot
simply treat the entities beyond those structures as negative
samples like previous graph contrastive learning do for the
nodes beyond the neighbors. For example, entity Mike and Amy
are not relation-symmetrical in Fig. 4, but we cannot simply
regard them as a negative pair. Thus, we design the negative-free
contrastive learning framework, which is also a recent trend in
graph contrastive learning works [55], [56], [58], [59]. Besides,
graph augmentations are usually adopted to construct different
graph views for contrastive learning. However, the complicated
relational structure makes it hard to generate augmented KGs.
But, in KGE-SymCL, the target entities can actually be regarded
as another view of the anchor entity in the defined relation-
symmetrical structures without any augmentation. This kind
of augmentation-free model is also developed in recent graph
contrastive learning works [59], [66]. Moreover, compared to
language model (LM) based contrastive KGE models, such as
SimKGC [27], our contrastive sample construction manner is
more explainable, since we directly construct contrastive pairs
based on the specific attribute in original KGs, instead of the sim-
ilarity of the embeddings, which can be generated by language
models. The latter manner highly relies on whether the LM is
well-trained. Due to the deterministic rules used for positive pair
construction, our contrastive pairs are more convincing.

D. Training Objective

The overall training objective of our proposed KGE-SymCL
consists of contrastive loss and task loss. It is formulated as
follows:

L = Ltask + α · Lcontrastive, (7)

where α denotes the trade-off hyper-parameter. Our model is
adopted for various tasks based on the task-specific loss function,
i.e., Ltask. For the link prediction, there are many types of loss
functions, e.g., the ranking losses [14], the binary logistic regres-
sion loss [84], the sampled multi-class log loss [21], the binary
cross-entropy loss [25], and etc. Besides, as for entity classifi-
cation, researchers widely use the cross entropy loss [23] as the
optimization objective. Note that compared to some of the other
contrastive learning frameworks, our KGE-SymCL is more like
a plug-and-play auxiliary module, which should be coupled with
the task losses. The labeled data in the supervised loss will help
constrain the training procedure to avoid the representational
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Algorithm 1: Pseudo-Code of Our KGE-SymCL.

1: Initialization: Selected KGE encoder: g(·); iterations:
T; target entity set: Pe; dictionary DP ; positive pair set:
CPm(·); entity set in KG: E ; sampling number: m;
trade-off weight: α;

2: for e in E do
3: Get the target entity set Pe by (3).
4: Update the {e: Pe} to dictionary DP .
5: end for
6: for t = 1 to T do
7: for e in E do
8: Generate anchor entity embedding for each

triplet with selected KGE model by (4).
9: Get the target entity set Pea by checking the

generated dictionary DP .
10: Generate the contrastive positive embedding

pair set with m element CPm(hea) by (5).
11: Calculate the contrastive loss Lcontrastive by

(6).
12: Optimize the network with Adam by

minimizing (7).
13: end for
14: end for

collapse situation. Besides, other common contrastive learning
models usually treat the sample i and the augmented sample i′

as the positive pair, where the augmented sample is constructed
from the original sample. These two samples may be relatively
similar in themselves, and it is easier to make the contrastive loss
of positive sample pairs tend to 0, resulting in a trivial solution.
However, our KGE-SymCL leverages the symmetrical attributes
underlying the data itself, and different samples are treated
as positive pairs, where the samples with our contrastive pair
construction strategy will naturally have more unique properties
inherited from the raw data, thus avoiding the trivial solution
in another way. Algorithm 1 presents the pseudo-code of our
KGE-SymCL.

IV. EXPERIMENT AND ANALYSIS

In this section, we first introduce the experiment setup. Then,
we integrate our KGE-SymCL with typical KGE baselines and
conduct experiments for link prediction and entity classification
to verify the effectiveness and generalization of the proposed
framework. Besides, we compare KGE-SymCLl with other
state-of-the-art models to demonstrate its superiority. Afterward,
statistical analysis is performed on relation-symmetrical
structures, together with intuitive case studies and running time
analysis, to comprehensively understand KGE-SymCL. Finally,
we conduct the hyper-parameter experiment to analyze the
sensitivity.

A. Experiment Setup

1) Dataset: For the link prediction task, we evaluate the
KGE-SymCL on three benchmark datasets, i.e., FB15k-
237 [85], WN18RR [22], and NELL-995 [86]. For the entity

TABLE II
THREE BENCHMARK DATASETS FOR LINK PREDICTION

TABLE III
FOUR BENCHMARK DATASETS FOR ENTITY CLASSIFICATION

classification task, we adopt four benchmark datasets, includ-
ing AIFB [87], AM [88], MUTAG [89], and BGS [90]. The
details of these seven datasets are described below. Besides,
Table III and Table II summarize their statistics. As for the
train/validation/test splits of these benchmarks, we follow pre-
vious works [89].
� WN18RR, as a typical link prediction dataset, contains

lexical relation triples between words from WordNet in
English. Unlike WN18, there is no inverse relation test
leakage in the validation and test datasets in WN18RR.

� FB15k-237, as a typical link prediction dataset, are also
derived from Freebase, which composes of knowledge base
relation triples and textual mentions of their entity pairs.
Unlike FB15 k, there is no inverse relation test leakage in
the validation and test datasets in FB15k-237.

� NELL-995 is derived from the NELL system in the 995th

iteration. It is designed for link prediction.
� AIFB describes the AIFB research institute in terms of its

research group, publications and staff. It is a Semantic Web
(RDF) dataset used as a benchmark in data mining. It is
mainly designed for the entity classification task.

� MUTAG is a collection of nitroaromatic compounds, aim-
ing at predicting their mutagenicity on Salmonella ty-
phimurium. In this work, we only use it for entity clas-
sification.

� BGS represents the British Geological Survey as the pre-
mier center for expertise and earth science information in
the United Kingdom. This data is published as part of BGS
OpenGeoscience. We use it for node classification here.

� AM describes the cultural heritage objects which corre-
spond to the city of Amsterdam in terms of the museum. It
is used for the entity classification task in this paper.

2) Implementation Detail: We implement KGE-SymCL
based on the PyTorch library [91] and conduct all experiments
with a single NVIDIA TITAN XP GPU and intel core i9-9900 K
CPU. For a fair comparison, the parameter settings in KGE-
SymCL for the KGE encoder are the same as shown in the origi-
nal paper. As for the specific hyper-parameters used in our work,
we search the upper bound of the anchor-pivot hop number K in
{1, 2, 3}, the sampling numberm in {10, 50, 100, 1000}, and the
trade-off weight α for contrastive loss in {0.001, 0.01, 0.1, 1}.
The best models on each dataset are listed in the result tables.
As for the evaluation metrics, we adopt classification accuracy
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TABLE IV
PERFORMANCE COMPARISON BETWEEN VARIOUS TYPICAL KNOWLEDGE GRAPH ENCODERS W./W.O. OUR SYMCL FRAMEWORK ON LINK PREDICTION. THE

BOLDFACE VALUES INDICATE THE BEST RESULTS

to evaluate the entity classification performance. As for the link
prediction, the head or tail entity of a true triplet is substituted
with another entity for each triplet in the test set, which is
regarded as the candidate triplet. We further deploy the trained
model on all candidate triplets and rank them based on the
calculated score. Ideally, true triplets should get higher scores
than others. Subsequently, following previous works in this
domain, the quality of the prediction is evaluated based on the
rank-based measures, including Mean Reciprocal Rank (MRR)
and Hits@N, where N ∈ {1, 3, 10}. The mean results of three
runs of each experiment are reported 1 as previous works do [25],
[27].

3) Compared Baseline: We compare KGE-SymCL with ex-
isting state-of-the-art KGE models. As for the link prediction
task, fourteen models are selected as the compared baselines,
including TransE [14], RotaE [15], QuatE [16], DualE [17],
HAKE [18], RESCAL [20], DisMult [19], ComplEX [21],
ConvE [22], CompLEX-DURA [82], RGCN [23], SCAN [38],
KBGAT [24], COMPGCN [25]. Moreover, we also extend
our model with two contrastive KGE learning models, i.e.,
SimKGC [27]. As for the entity classification task, Feat [92],
WL [93], RDF2Vec [81], RR-GCN [94] are selected as the com-
pared baselines. Note that except for the results for NELL-995,
the other results of the compared baselines are recorded from
the original papers.

B. Performance Comparison

1) Effectiveness of KGE-SymCL: To verify the effectiveness
and plug-and-play attribute of KGE-SymCL, Tables IV and V
show the performance comparison of the KGE models w./w.o.
our contrastive learning framework. We select eight baseline

1variances about results are very small in all cases, thus not reported

TABLE V
PERFORMANCE COMPARISON BETWEEN VARIOUS TYPICAL KNOWLEDGE

GRAPH ENCODERS W./W.O. OUR SYMCL FRAMEWORK ON ENTITY

CLASSIFICATION. THE BOLDFACE VALUES INDICATE THE BEST RESULTS

models for performance comparison. As for the link prediction
task, we choose two typical baselines, i.e., the most classical
and the most recent state-of-the-art baselines, for each type of
the KGE model. Moreover, we also extend our structural-based
contrastive learning to the language-model based contrastive
KGE model SimKGC. Table IV indicates that KGE-SymCL
makes average boosts on all the metrics for most of the base-
lines. Referring to performance improvements in this area [18]
[25], the performances are promising. In particular, our SymCL
framework improves the RGCN and COMPGCN on NELL-
995 average of 3.1%, 3.0%, 5.2%, 3.2% on MRR, Hit@1,
Hit@3, and Hit@10 separately. Besides, DisMult and Hake’s
performance on FB15K-237 is also improved, i.e., 1.4%, 1.8%,
1.2%, 1.3% on MRR, Hit@1, Hit@3, and Hit@10. Moreover,
it further indicates that our approach makes average 0.71%,
1.0% improvements on MRR, and Hit@10 on the SimKGC,
which verifies that KGE-SymCL can also be well scaled to other
KGE-CL methods, and further suggests that the leveraged struc-
tural information could also enhance the discriminative ability of
other contrastive learning KGE models. As for the entity classi-
fication, we observe that KGE-SymCL makes an average 1.92%
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TABLE VI
STUDENT’S T-TEST MRR OF COMPGCN AND RGCN W./W.O. SYMCL FOR

LINK PREDICTION. NOTE THAT ALL OF THE P-VALUE < 0.05

improvement in accuracy compared to the KGE baselines based
on Table V. Moreover, to verify the statistical significance of our
framework, we have also conducted a student’s t-test between
the typical KGE baselines (i.e., COMPGCN and RGCN) w./w.o.
SymCL. Table VI shows that the p-values of the MRR metric are
always smaller than 0.05, which indicates that the performance
improvement is significant statistically.

2) Superiority of KGE-SymCL: We also compare KGE-
SymCL with other state-of-the-art (SOTA) KGE models for both
link prediction and entity classification tasks. The performance
results are present in Table VII and Table VIII. Table VII indi-
cates that KGE-SymCL outperforms other KGE models on all of
the datasets, especially for the FB15k-237 and NELL-995. Com-
pared to these two datasets, WN18RR is more simple and small.
Thus, the basic KGE models are enough to get promising per-
formance without contrastive learning frameworks, which leads
to fewer improvements. Table VIII shows that KGE-SymCL
makes an average 1.25% improvement in accuracy compared to
the previous SOTA KGE models for entity classification tasks.
In particular, the COMPGCN-SymCL model achieves better
results on the BGS and AM datasets. The experiment results
indicate that our SymCL enhances the basic KGE encoders for
better expressive and discriminative ability.

3) Discussion: The performance comparison on the two
downstream tasks between KGE-SymCL with other KGE base-
lines shown in this section demonstrates the generalizability and
superiority of our model. In particular, the generalizability, as the
most important attribute of KGE-SymCL, is verified from two
aspects: (1) KGE-SymCL can be easily adopted to enhance the
expressive ability of different KGE models. (2) KGE-SymCL is
applied to various benchmark datasets for different downstream
tasks. Moreover, the promising results suggest that the structural
information leveraged in KGE-SymCL indeed helps model learn
more powerful and discriminative representations.

C. Relation-Symmetrical Structure Analysis

1) Statistical Analysis: We counted and recorded the num-
ber and calculated the proportion of the 1-hop and 2-hop
relation-symmetrical structures in three link prediction bench-
mark datasets to demonstrate the universality of the defined
relation-symmetrical structures. During relation-symmetrical

structure extraction, we simply remove the recurring nodes in
our realization, which would scale to the dataset with more
relations to alleviate the potential over-representation problem.
Fig. 5 suggests that there are many relation-symmetrical (R-S)
structures in these datasets, which suggests the feasibility of the
motivation in this work. In particular, compared to WN18RR
and FB15K-237, more R-S structures are found in NELL-995,
which may also be a reason for the more apparent improvements
made by KGE-SymCL on NELL-995 datasets.

2) Intuitive Case Study: We further intuitively show the
six relation-symmetrical structures from the link prediction
benchmark datasets, i.e., WN18RR [22], FB15K-237 [85], and
NELL-995 [86] (See Fig. 6). For each dataset, a 1-hop relation-
symmetrical structure and a 2-hop relation-symmetrical struc-
ture are present. These cases demonstrate that entities located
in relation-symmetrical positions, commonly found in knowl-
edge graphs, are usually similar and correlated. For example,
Tangerine Dream is 2-hop relation-symmetrical to Trent Reznor
about Post-Industrial Music. Meanwhile, we can easily find
that these entities have similar semantics since they are both
Post-Industrial Music artists in Fig. 6(b). Besides, Shelfari is
1-hop relation-symmetrical to Yahoo about Internet, which in-
dicates the semantic similarity between them since they are both
Internet companies in Fig. 6(c). Similar conclusions also can
be deducted from other samples. Note that we do not need
to know the concrete label of the entity or the relationships
in our relation-symmetrical structure. We can just number the
relationships as re11, re12, re13 and so on. If the same relation
types associated with the edge directions are symmetrical in the
structure, we can treat it as the relation-symmetrical structure
referred to in Definition 2. It is because the relational edges in
KGs naturally constrain the entities. Starting from the same pivot
entity (e.g., Male) and the same rel1, we will reach the entities
with similar semantics, no matter what the pivot entity and rel1
are. Using such property of the relation-symmetrical structure
to construct the contrastive pairs will be more stable since no
other language models are required.

D. Running Time Analysis

We analyze the running time of our method in this section. Our
method contains two parts, i.e., relation-symmetrical structure
extraction and relation-symmetrical contrastive learning. As first
contrastive KGE framework based on structural information,
We focus more on the effectiveness of KGE-SymCL. Thus, we
only leverage the traversing method to extracting the relation-
symmetrical structures and store them into the corresponding
dictionary. We observe that the computational costs are accept-
able for all the typical KG benchmark datasets since we only
need to run the structure extraction once for each dataset and
reuse the restored dictionarynpy files, which will be shared after
the paper is published. More concretely, it takes about 50, 120,
and 95 mins with intel core i9-9900 K CPU to extract the 2-hop
structures for WN18RR, FB15K-237, and NELL-995. Besides,
we further compare the running time of the learning procedure
w./w.o our relation-symmetrical contrastive framework. Fig. 7
indicates that the running time caused by our contrastive learning
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TABLE VII
PERFORMANCE COMPARISON OF KGE-SYMCL WITH KGE BASELINES FOR LINK PREDICTION. BOLDFACE VALUES INDICATE THE BEST RESULTS

Fig. 5. Statistics on relation-symmetrical (R-S) structures in benchmark datasets. The left Y axes correspond to the structure number bars, i.e., blue bars, while
the right Y axes correspond to the proportion bars, i.e., red bars. Proportion is calculated by ”#k-hop R-S structures/#k-hop structures”.

model is only 2.5 and 6.7 mins for WN18RR and FB15k-237
datasets with COMPGCN [25], respectively. Moreover, it is
found that the running time is increased by only 29 mins and 16
mins for WN18RR and FB15k-237 datasets with SimKGC [27],
which is acceptable and shows great opportunity to extend
our KGE-SymCL with LLM. Considering the performance im-
provement, These small proportions of the time increase are
acceptable.

E. Hyper-Parameter Analysis

We investigate the influence of the hyper-parameter hop K,
sampling number m, and trade-off weight α in our KGE-
SymCL. The COMPGCN-SymCL is selected as the basic model.
As for the scope of the hyper-parameters for both two tasks,
i.e., entity classification and link prediction, K is selected in

{1, 2, 3}, and α is searched in {0.001, 0.01, 0.1}. However,
since the benchmark datasets for entity classification are smaller
than link prediction, the different scopes of m are used, i.e.,
{10, 50, 100, 1000} for link prediction and {10, 50, 100} for
entity classification. As for K and m, it is observed that there is
no great fluctuation of performance whenK andm are varying in
Fig. 8(a) to 8(d). It demonstrates that KGE-SymCL is insensitive
to K and m. The reason is that there are many symmetrical
structures for each entity, which can enhance the discriminative
capability of samples. As for the trade-off hyper-parameter
α, we find our KGE-SymCL is much more sensitive to it
(See Fig. 8(e) and (f)). It is because of the magnitude difference
between the contrastive and task loss, i.e., the contrastive loss
is usually a hundred times larger than the task loss. The best
performances are generally reached when α = 0.001.
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TABLE VIII
PERFORMANCE COMPARISON BETWEEN KGE-SYMCL WITH KGE BASELINES

FOR ENTITY CLASSIFICATION. THE BOLDFACE VALUES INDICATE THE BEST

RESULTS

Fig. 6. Relation-Symmetrical structure samples.

Fig. 7. Running time comparison of SimKGC and COMPGCN w./w.o
SymCL.

V. CONCLUSION

In this paper, we propose a knowledge graph contrastive
learning framework based on relation-symmetrical structures,
termed KGE-SymCL, which leverages the symmetrical struc-
tural information in KGs to enhance the discriminative ability
of KGE models. Extensive Experimental results on benchmark
datasets have verified the proposed contrastive framework can
be easily adopted to other KGE models to enhance their dis-
criminative and expressive ability. Although proven effective,
we can definitely further improve the discriminative capacity
of KGE-SymCL if high-confidence negative contrastive pairs
can be constructed and leveraged. As a primitive attempt to

Fig. 8. Sensitivity analysis of the hyper-parameters. Sub-figure (a), (c), and (e)
correspond to link prediction, and the rest parts are related to entity classification.

use structure information for contrastive learning KGE, it is
not studied in this work. In the future, we aim to continue
investigating a more fine-grained strategy for high-confidence
negative pair construction to empower our contrastive learning
framework, such as integrating our KGE-SymCL with other
language-based contrastive KGE models.
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